

		OR A COMPANY	
6	a.	Form a PDE by eliminating arbitrary functions, $z = yf(x) + x\phi(y)$.	(06 Marks)
	b.	Solve the equation $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that $z = e^y$ and $\frac{\partial z}{\partial x} = 1$ when $x = 0$.	(07 Marks)
	c.	Find various possible solution of one dimensional heat equation, by the method of	f separation
		of variables.	(07 Marks)
Module-4			
_			
7	a.	Evaluate $\iint_{0}^{a} \iint_{0}^{x} \int_{0}^{x+y+z} dz dy dx .$	(06 Marks)
	b.	Evaluate $\int_{-\infty}^{2} \int_{-\infty}^{x^2} (x^2 + y^2) dy dx$ by changing the order of integration.	(07 Marks)
	c.	Derive the relation between Beta and Gamma function as $\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma m + n}$.	(07 Marks)
		¹ m + n	
		OR OR	
8	a.	Evaluate $\iint x^2 y dx dy$, where R is the region bounded by the lines $y = x, y + x = 2$	2 and $y = 0$.
		R	(06 Marks)
	_	$a\sqrt{a^2-y^2}$	()
	b.	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} y\sqrt{x^2+y^2} dx dy$ by changing into polars.	(07 Marks)
	0		
	c.	Show that $\int_{0}^{\infty} x \cdot e^{-x^8} \times \int_{0}^{\infty} x^2 \cdot e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$.	(07 Marks)
		$\frac{Module-5}{\cos 2t - \cos 3t}$	
9	a.	Find the Laplace transform of $2^t + \frac{\cos 2t - \cos 3t}{t}$.	(06 Marks)
	h	If $f(t) = \int t$, $0 \le t \le a$ $f(t + 2a) = f(t)$	
	0.	If $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a - t, & a \le t \le 2a \end{cases}$, $f(t + 2a) = f(t)$	
		Sketch the graph of f(t) as a periodic function and show $L[f(t)] = \frac{1}{s^2} tanh(\frac{as}{2})$.	(07 Marks)
	c.	Find the inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$, using convolution theorem.	(07 Marks)
	Ć		
		$\int \cos t : 0 < t \le \pi$	
10	a.	Express $f(t) = \begin{cases} \cos t : & 0 < t \le \pi \\ 1 : & \pi < t \le 2\pi \end{cases}$ in terms of unit step function and hence find $\sin t : & t > 2\pi \end{cases}$	its Laplace
		$\sin t$: $t > 2\pi$	-
		transform.	(06 Marks)
	b.	Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s+1)^2}$.	(07 Marks)
	0		т 1
	C.	Solve the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{2x}$, $y(0) = 2$, $y'(0) = 1$ using	
		transform method.	(07 Marks)
		* * * * * 2 of 2	
		G. T	
	1		

OR

17MAT21

CENTRAL